All local bond-state densities are calculated for q-state Potts and clock models in three spatial dimensions, d=3. The calculations are done by an exact renormalization group on a hierarchical lattice, including the density recursion relations, and simultaneously are the Migdal-Kadanoff approximation for the cubic lattice. Reentrant behavior is found in the interface densities under symmetry breaking, in the sense that upon lowering temperature the value of the density first increases, then decreases to its zero value at zero temperature. For this behavior, a physical mechanism is proposed. A contrast between the phase transition of the two models is found, and explained by alignment and entropy, as the number of states q goes to infinity. For the clock models, the renormalization-group flows of up to twenty energies are used.