We report on the electrical transport properties of Nb based Josephson junctions with Pt/Co$_{68}$B$_{32}$/Pt ferromagnetic barriers. The barriers exhibit perpendicular magnetic anisotropy, which has the main advantage for potential applications over magnetisation in-plane systems of not affecting the Fraunhofer response of the junction. In addition, we report that there is no magnetic dead layer at the Pt/Co$_{68}$B$_{32}$ interfaces, allowing us to study barriers with ultra-thin Co$_{68}$B$_{32}$. In the junctions, we observe that the magnitude of the critical current oscillates with increasing thickness of the Co$_{68}$B$_{32}$ strong ferromagnetic alloy layer. The oscillations are attributed to the ground state phase difference across the junctions being modified from zero to $pi$. The multiple oscillations in the thickness range $0.2~leqslant~d_text{CoB}~leqslant~1.4$~nm suggests that we have access to the first zero-$pi$ and $pi$-zero phase transitions. Our results fuel the development of low-temperature memory devices based on ferromagnetic Josephson junctions.