Radiative heat transfer and radiative thermal energy for 2D nanoparticle ensembles


الملخص بالإنكليزية

Radiative heat transfer (RHT) and radiative thermal energy (RTE) for 2D nanoparticle ensembles are investigated in the framework of many-body radiative heat transfer theory. We consider nanoparticles made of different materials: metals (Ag), polar dielectrics (SiC) or insulator-metallic phase-change materials (VO$_2$). We start by investigating the RHT between two parallel 2D finite-size square-lattice nanoparticle ensembles, with particular attention to many-body interactions (MBI) effects. We systematically analyze the different physical regimes characterizing the RHT. When $pll lambda_T$, a multiple scattering of the electromagnetic field inside the systems gives rise to a MBI regime. MBI effects manifest themselves in different ways, depending on $d$: (a) if $d > lambda_T$, due to the pure intra-ensemble MBI inside each 2D ensemble, the total heat conductance is less affected, and the thermal conductance spectrum manifests a single peak which is nonetheless shifted with respect to the one typical of two isolated nanoparticles. (b) if $d < lambda_T$, there is a strong simultaneous intra- and inter-ensemble MBI. In this regime there is a direct quantitative effect on the heat conductance, in addition to a qualitative effect on the thermal conductance spectrum which now manifests a new second peak. As for the RTE, to correctly describe the radiation emitted by metallic nanoparticles, we derive an expression of the Poynting vector including also magnetic contribution, in addition to the electric one. By analyzing both periodic and non-periodic ensembles, we show that the RTE emitted by a single 2D nanoparticle ensemble is sensitive to the particle distribution. As instance, we see that the RTE emitted by 2D concentric ring-configuration ensemble has an inhibition feature near the center of the ensemble.

تحميل البحث