Using smartphones and wearable devices to monitor behavioural changes during COVID-19


الملخص بالإنكليزية

We aimed to explore the utility of the recently developed open-source mobile health platform RADAR-base as a toolbox to rapidly test the effect and response to NPIs aimed at limiting the spread of COVID-19. We analysed data extracted from smartphone and wearable devices and managed by the RADAR-base from 1062 participants recruited in Italy, Spain, Denmark, the UK, and the Netherlands. We derived nine features on a daily basis including time spent at home, maximum distance travelled from home, maximum number of Bluetooth-enabled nearby devices (as a proxy for physical distancing), step count, average heart rate, sleep duration, bedtime, phone unlock duration, and social app use duration. We performed Kruskal-Wallis tests followed by post-hoc Dunns tests to assess differences in these features among baseline, pre-, and during-lockdown periods. We also studied behavioural differences by age, gender, body mass index (BMI), and educational background. We were able to quantify expected changes in time spent at home, distance travelled, and the number of nearby Bluetooth-enabled devices between pre- and during-lockdown periods. We saw reduced sociality as measured through mobility features, and increased virtual sociality through phone usage. People were more active on their phones, spending more time using social media apps, particularly around major news events. Furthermore, participants had lower heart rate, went to bed later, and slept more. We also found that young people had longer homestay than older people during lockdown and fewer daily steps. Although there was no significant difference between the high and low BMI groups in time spent at home, the low BMI group walked more. RADAR-base can be used to rapidly quantify and provide a holistic view of behavioural changes in response to public health interventions as a result of infectious outbreaks such as COVID-19.

تحميل البحث