We consider a non-supersymmetric $E_6$ Grand Unified Theory (GUT) with intermediate trinification symmetry $SU(3)_C times SU(3)_L times SU(3)_R times D$ (D denoted as D-parity for discrete left-right symmetry) and study the effect of one-loop threshold corrections arising due to every class of superheavy particles (scalars, fermions and vectors). It is observed that, the intermediate mass scale $M_I$ and $sin^2theta_W$ remain unaffected by GUT threshold contributions. The threshold modified unification mass scale $M_U$ is in excellent agreement with the present experimental proton decay constraint. The novel feature of the model is that GUT threshold uncertainty of $M_U$ is found to be controlled by superheavy scalars only, leading to a very predictive scenario for proton decay, which can be verifiable within the foreseeable experiments.