The propagation of ultrashort pulses in optical fibre displays complex nonlinear dynamics that find important applications in fields such as high power pulse compression and broadband supercontinuum generation. Such nonlinear evolution however, depends sensitively on both the input pulse and fibre characteristics, and optimizing propagation for application purposes requires extensive numerical simulations based on generalizations of a nonlinear Schrodinger-type equation. This is computationally-demanding and creates a severe bottleneck in using numerical techniques to design and optimize experiments in real-time. Here, we present a solution to this problem using a machine-learning based paradigm to predict complex nonlinear propagation in optical fibres with a recurrent neural network, bypassing the need for direct numerical solution of a governing propagation model. Specifically, we show how a recurrent neural network with long short-term memory accurately predicts the temporal and spectral evolution of higher-order soliton compression and supercontinuum generation, solely from a given transform-limited input pulse intensity profile. Comparison with experiments for the case of soliton compression shows remarkable agreement in both temporal and spectral domains. In optics, our results apply readily to the optimization of pulse compression and broadband light sources, and more generally in physics, they open up new perspectives for studies in all nonlinear Schrodinger-type systems in studies of Bose-Einstein condensates, plasma physics, and hydrodynamics.