Hierarchy-Based Algorithms for Minimizing Makespan under Precedence and Communication Constraints


الملخص بالإنكليزية

We consider the classic problem of scheduling jobs with precedence constraints on a set of identical machines to minimize the makespan objective function. Understanding the exact approximability of the problem when the number of machines is a constant is a well-known question in scheduling theory. Indeed, an outstanding open problem from the classic book of Garey and Johnson asks whether this problem is NP-hard even in the case of 3 machines and unit-length jobs. In a recent breakthrough, Levey and Rothvoss gave a $(1+epsilon)$-approximation algorithm, which runs in nearly quasi-polynomial time, for the case when job have unit lengths. However, a substantially more difficult case where jobs have arbitrary processing lengths has remained open. We make progress on this more general problem. We show that there exists a $(1+epsilon)$-approximation algorithm (with similar running time as that of Levey and Rothvoss) for the non-migratory setting: when every job has to be scheduled entirely on a single machine, but within a machine the job need not be scheduled during consecutive time steps. Further, we also show that our algorithmic framework generalizes to another classic scenario where, along with the precedence constraints, the jobs also have communication delay constraints. Both of these fundamental problems are highly relevant to the practice of datacenter scheduling.

تحميل البحث