New growth mechanism of dust grains in protoplanetary disks with magnetically driven disk winds


الملخص بالإنكليزية

We discovered a new growth mode of dust grains to km-sized bodies in protoplanetary disks that evolve by viscous accretion and magnetically driven disk winds (MDWs). We solved an approximate coagulation equation of dust grains with time-evolving disks that consist of both gas and solid components by a one-dimensional model. With the grain growth, all solid particles initially drift inward toward the central star by the gas drag force. However, the radial profile of gas pressure, $P$, is modified by the MDW that disperses the gas in an inside-out manner. Consequently, a local concentration of solid particles is created by the converging radial flux of drifting dust grains at the location with the convex upward profile of $P$. When the dimensionless stopping time, ${rm St}$, there exceeds unity, the solid particles spontaneously reach the growth dominated state because of the positive feedback between the suppressed radial drift and the enhanced accumulation of dust particles that drift from the outer part. Once the solid particles are in the drift limited state, the above-mentioned condition of ${rm St} gtrsim 1$ for the dust growth is equivalent with begin{equation} Sigma_{rm d}/Sigma_{rm g}gtrsim eta, onumber end{equation} where $Sigma_{rm d}/Sigma_{rm g}$ is the dust-to-gas surface-density ratio and $eta$ is dimensionless radial pressure-gradient force. As a consequence of the successful growth of dust grains, a ring-like structure containing planetesimal-sized bodies is formed at the inner part of the protoplanetary disks. Such a ring-shaped concentration of planetesimals is expected to play a vital role in the subsequent planet formation.

تحميل البحث