The analysis of defects and defect dynamics in crystalline materials is important for fundamental science and for a wide range of applied engineering. With increasing system size the analysis of molecular-dynamics simulation data becomes non-trivial. Here, we present a workflow for semi-automatic identification and classification of defects in crystalline structures, combining a new approach for defect description with several already existing open-source software packages. Our approach addresses the key challenges posed by the often relatively tiny volume fraction of the modified parts of the sample, thermal motion and the presence of potentially unforeseen atomic configurations (defect types) after irradiation. The local environment of any atom is converted into a rotation-invariant descriptive vector (fingerprint), which can be compared to known defect types and also yields a distance metric suited for classification. Vectors which cannot be associated to known structures indicate new types of defects. As proof-of-concept we apply our method on an iron sample to analyze the defects caused by a collision cascade induced by a 10 keV primary-knock-on-atom. The obtained results are in good agreement with reported literature values.