High rank torus actions on contact manifolds


الملخص بالإنكليزية

We prove LeBrun--Salamon conjecture in the following situation: if $X$ is a contact Fano manifold of dimension $2n+1$ whose group of automorphisms is reductive of rank $geq max(2,(n-3)/2)$ then $X$ is the adjoint variety of a simple group. The rank assumption is fulfilled not only by the three series of classical linear groups but also by almost all the exceptional ones.

تحميل البحث