An approach for a Poincare covariant description of nuclear structure and of lepton scattering off nuclei is proposed within the relativistic Hamiltonian dynamics in the light-front form. Indeed a high level of accuracy is needed for a comparison with the increasingly precise present and future experimental data at high momentum transfer. Therefore, to distinguish genuine QCD effects or effects of medium modified nucleon structure functions from conventional nuclear structure effects, the commutation rules between the Poincare generators should be satisfied. For the first time in this paper a proper hadronic tensor for inclusive deep inelastic scattering of electrons off nuclei is derived in the impulse approximation in terms of the single nucleon hadronic tensor. Our approach is based : i) on a light-front spectral function for nuclei, obtained taking advantage of the successful non-relativistic knowledge of nuclear interaction, and ii) on the free current operator that, if defined in the Breit reference frame with the momentum transfer, $bf q$, parallel to the $z$ axis, fulfills Poincare covariance and current conservation. Our results can be generalized : i) to exclusive processes or to semi-inclusive deep inelastic scattering processes; ii) to the case where the final state interaction is considered through a Glauber approximation; iii) to finite momentum transfer kinematics. As a first test, the hadronic tensor is applied to obtain the nuclear structure function F$_2^A$ and to evaluate the EMC effect for $^3He$ in the Bjorken limit. Encouraging results including only the two-body part of the light-front spectral function are presented.