Soft modular robots enable more flexibility and safer interaction with the changing environment than traditional robots. However, it has remained challenging to create deformable connectors that can be integrated into soft machines. In this work, we propose a flexible connector for soft modular robots based on micropatterned intersurface jamming. The connector is composed of micropatterned dry adhesives made by silicone rubber and a flexible main body with inflatable chambers for active engagement and disengagement. Through connection force tests, we evaluate the characteristics of the connector both in the linear direction and under rotational disruptions. The connector can stably support an average maximum load of 22 N (83 times the connectors body weight) linearly and 10.86 N under planar rotation. The proposed connector demonstrates the potential to create a robust connection between soft modular robots without raising the systems overall stiffness; thus guarantees high flexibility of the robotic system.