Producing flow in racetrack atom circuits by stirring at zero and non-zero temperature


الملخص بالإنكليزية

We present a study of how macroscopic flow can be produced in Bose-Einstein condensate confined in a racetrack potential by stirring with a wide rectangular barrier. This potential consists of two half-circle channels separated by straight channels of length $L$ and is a ring potential if $L=0$. We present the results of a large set of simulations where racetrack condensates stirred with a barrier under varying conditions of barrier height, stir speed, racetrack geometry, and temperature. We found that stirring was readily able to produce circulation in ring and non-ring geometries but that the exact amount of flow produced was complicated. We therefore also studied the mechanism by which flow was produced in the stirring process. We found that circulation was induced by the swap of a vortex/anti-vortex pair that was initially created by backflow of the condensate in the region of depressed density by the barrier. When the barrier strength reached a critical value a number of these vortex-swap events occurred in rapid succession so that flow speed of the circulation produced was enough to exceed the stir speed of the barrier. Flow that was initially localized in the vortices involved in the vortex swap was converted into macroscopic flow around the racetrack by pairs of disturbances each generated during the vortex swap. Each pair consisted of a vortex/anti-vortex pair moving in the anti-stir direction and a compression wave moving in the stir direction. This picture of the mechanism for making flow will enable the design of stirring schedules that create a desired amount of flow.

تحميل البحث