The chiral QED$_3$--Gross-Neveu-Yukawa (QED$_3$-GNY) theory is a $2+1$-dimensional U(1) gauge theory with $N_f$ flavors of four-component Dirac fermions coupled to a scalar field. For $N_f=1$, the specific chiral Ising QED$_3$-GNY model has recently been conjectured to be dual to the deconfined quantum critical point that describes Neel--valence-bond-solid transition of frustrated quantum magnets on square lattice. We study the universal critical behaviors of the chiral QED$_3$-GNY model in $d=4-epsilon$ dimensions for an arbitrary $N_f$ . We calculate the boson anomalous dimensions, inverse correlation length exponent, as well as the scaling dimensions of nonsinglet fermion bilinear in the chiral QED$_3$-GNY model. The Pad$acute{e}$ estimates for the exponents are obtained in the chiral Ising-, XY- and Heisenberg-QED$_3$-GNY universality class respectively. We also establish the general condition of the supersymmetric criticality for the ungauged QED$_3$-GNY model. For the conjectured duality between chiral QED$_3$-GNY critical point and deconfined quantum critical point, we find the inverse correlation length exponent has a lower boundary $ u^{-1}>0.75$, beyond which the Ising-QED$_3$-GNY--$mathbb{C}$P$^1$ duality may hold.