We introduce High-Relative Degree Stochastic Control Lyapunov functions and Barrier Functions as a means to ensure asymptotic stability of the system and incorporate state dependent high relative degree safety constraints on a non-linear stochastic systems. Our proposed formulation also provides a generalisation to the existing literature on control Lyapunov and barrier functions for stochastic systems. The control policies are evaluated using a constrained quadratic program that is based on control Lyapunov and barrier functions. Our proposed control design is validated via simulated experiments on a relative degree 2 system (2 dimensional car navigation) and relative degree 4 system (two-link pendulum with elastic actuator).