Estimation of Stability Regions of Droop Control Slopes for MMC-based MTDC Systems


الملخص بالإنكليزية

This paper proposes a computational method to efficiently and quickly estimate stability regions of droop control slopes for modular multilevel converter (MMC)-based multiterminal dc (MTDC) systems. The proposed method is based on a general small-signal model consisting of a dc grid with arbitrary topology and MMCs with dq controllers. The general small-signal model developed by a systematic way can be used for small-disturbance stability analysis. To verify the developed small-signal model, a comparison between the developed model calculated in MATLAB and the detailed switching model simulated in PSCAD/EMTDC is conducted, which demonstrates the accuracy of the developed small-signal model. Based on the eigenvalues sensitivity and the Taylor Series of eigenvalues, a set of inequality constraints are derived and used to efficiently estimate the stability regions of all coupled slopes of the droop characteristics. It is helpful for efficiently designing and adjusting the droop controller parameters for the MMC-MTDC systems. The effectiveness of the proposed method is demonstrated by the several examinations including the supremum test and the stability region sketch on accuracy and feasibility.

تحميل البحث