Metric theory of lower bounds on Weyl sums


الملخص بالإنكليزية

We prove that the Hausdorff dimension of the set $mathbf{x}in [0,1)^d$, such that $$ left|sum_{n=1}^N expleft(2 pi ileft(x_1n+ldots+x_d n^dright)right) right|ge c N^{1/2} $$ holds for infinitely many natural numbers $N$, is at least $d-1/2d$ for $d ge 3$ and at least $3/2$ for $d=2$, where $c$ is a constant depending only on $d$. This improves the previous lower bound of the first and third authors for $dge 3$. We also obtain similar bounds for the Hausdorff dimension of the set of large sums with monomials $xn^d$.

تحميل البحث