Arithmetic version of Anderson localization via reducibility


الملخص بالإنكليزية

The arithmetic version of Anderson localization (AL), i.e., AL with explicit arithmetic description on both the localization frequency and the localization phase, was first given by Jitomirskaya cite{J} for the almost Mathieu operators (AMO). Later, the result was generalized by Bourgain and Jitomirskaya cite{bj02} to a class of {it one dimensional} quasi-periodic long-range operators. In this paper, we propose a novel approach based on an arithmetic version of Aubry duality and quantitative reducibility. Our method enables us to prove the same result for the class of quasi-periodic long-range operators in {it all dimensions}, which includes cite{J, bj02} as special cases.

تحميل البحث