Do subsequent outbursts of the same EXor source present similar features?


الملخص بالإنكليزية

V1118 Ori is a classical EXor source whose light curve has been monitored over the past thirty years (although not continuously). It underwent a powerful outburst in 2005, followed by ten years of quiescence and a less intense outburst in 2015. In 2019, a new intense brightness increase was observed ($Delta g$ $sim$ 3 mag). This new accretion episode offers the opportunity to compare the photometric and spectroscopic properties of different outbursts of the same source. This allows one to highlight differences and similarities among different events by removing any possible bias related to the intrinsic properties of the star-disk system. We discovered the 2019 V1118 Ori outburst by examining the $g$-band light curve acquired by the Zwicky Transient Facility and followed the decreasing phase with the Rapid Eye Mount telescope in the $griz$ bands. Two near-infrared spectra were also acquired at different brightness stages with the Large Binocular Telescope. The last event shows the following characteristics: 1) amplitude similar than in 2015 and lower than in 2005; 2) duration less than one year as in previous events; 3) rise (decline) speed of 0.018 (0.031) mag/day, which is different from previous cases; 4) a gradual blueing of the [$g-r$] color is observed over time, while the [$r-i$] color remains roughly unchanged; 5) with few exceptions, the near-infrared lines (mainly HI recombination) are the same observed in 2015; 6) the mass accretion rate peaks at Macc $sim$ 10$^{-7}$ Msun/yr, and decreases in about a month down to a few 10$^{-8}$ Msun/yr. Our analysis shows that the comparison of data from different outbursts of the same source is a non-trivial exercise, which allows obtaining important clues useful to drive theoretical efforts towards a better understanding of the EXor phenomenon.

تحميل البحث