Let $P$ be a set of $2n$ points in convex position, such that $n$ points are colored red and $n$ points are colored blue. A non-crossing alternating path on $P$ of length $ell$ is a sequence $p_1, dots, p_ell$ of $ell$ points from $P$ so that (i) all points are pairwise distinct; (ii) any two consecutive points $p_i$, $p_{i+1}$ have different colors; and (iii) any two segments $p_i p_{i+1}$ and $p_j p_{j+1}$ have disjoint relative interiors, for $i eq j$. We show that there is an absolute constant $varepsilon > 0$, independent of $n$ and of the coloring, such that $P$ always admits a non-crossing alternating path of length at least $(1 + varepsilon)n$. The result is obtained through a slightly stronger statement: there always exists a non-crossing bichromatic separated matching on at least $(1 + varepsilon)n$ points of $P$. This is a properly colored matching whose segments are pairwise disjoint and intersected by common line. For bo