Na3Bi has attracted significant interest in both bulk form as a three-dimensional topological Dirac semimetal and in ultra-thin form as a wide-bandgap two-dimensional topological insulator. Its extreme air sensitivity has limited experimental efforts on thin- and ultra-thin films grown via molecular beam epitaxy to ultra-high vacuum environments. Here we demonstrate air-stable Na3Bi thin films passivated with magnesium difluoride (MgF2) or silicon (Si) capping layers. Electrical measurements show that deposition of MgF2 or Si has minimal impact on the transport properties of Na3Bi whilst in ultra-high vacuum. Importantly, the MgF2-passivated Na3Bi films are air-stable and remain metallic for over 100 hours after exposure to air, as compared to near instantaneous degradation when they are unpassivated. Air stability enables transfer of films to a conventional high-magnetic field cryostat, enabling quantum transport measurements which verify that the Dirac semimetal character of Na3Bi films is retained after air exposure.