Efficient photo-induced second harmonic generation in silicon photonics


الملخص بالإنكليزية

Silicon photonics lacks a second-order nonlinear optical response in general because the typical constituent materials are centro-symmetric and lack inversion symmetry, which prohibits second-order nonlinear processes such as second harmonic generation (SHG). Here, for the first time, we realize efficient SHG in a silicon-based optical microresonator by combining a strong photo-induced effective second-order nonlinearity with resonant enhancement and perfect-phase matching. We show a record-high conversion efficiency of 2,500 %/W, which is 2 to 4 orders of magnitude larger than previous works. In particular, our devices realize mW-level SHG output powers with > 20 % power conversion efficiency. This demonstration is a major breakthrough in realizing efficient second-order nonlinear processes in silicon photonics, and paves the way for integrated self-referencing of Kerr frequency combs for compact optical frequency synthesis and optical clock technologies.

تحميل البحث