Tensor Networks: Phase transition phenomena on hyperbolic and fractal geometries


الملخص بالإنكليزية

One of the challenging problems in the condensed matter physics is to understand the quantum many-body systems, especially, their physical mechanisms behind. Since there are only a few complete analytical solutions of these systems, several numerical simulation methods have been proposed in recent years. Amongst all of them, the Tensor Network algorithms have become increasingly popular in recent years, especially for their adaptability to simulate strongly correlated systems. The current work focuses on the generalization of such Tensor-Network-based algorithms, which are sufficiently robust to describe critical phenomena and phase transitions of multistate spin Hamiltonians in the thermodynamic limit. We have chosen two algorithms: the Corner Transfer Matrix Renormalization Group and the Higher-Order Tensor Renormalization Group. This work, based on tensor-network analysis, opens doors for the understanding of phase transition and entanglement of the interacting systems on the non-Euclidean geometries. We focus on three main topics: A new thermodynamic model of social influence, free energy is analyzed to classify the phase transitions on an infinite set of the negatively curved geometries where a relation between the free energy and the Gaussian radius of the curvature is conjectured, a unique tensor-based algorithm is proposed to study the phase transition on fractal structures.

تحميل البحث