The Berezinskii-Kosterlitz-Thouless (BKT) transitions of the six-state clock model on the square lattice are investigated by means of the corner-transfer matrix renormalization group method. A classical analog of the entanglement entropy $S( L, T )$ is calculated for $L times L$ square system up to $L = 129$, as a function of temperature $T$. The entropy exhibits a peak at $T = T^*_{~}( L )$, where the temperature depends on both $L$ and the boundary conditions. Applying the finite-size scaling to $T^*_{~}( L )$ and assuming presence of the BKT transitions, the two distinct phase-transition temperatures are estimated to be $T_1^{~} = 0.70$ and $T_2^{~} = 0.88$. The results are in agreement with earlier studies. It should be noted that no thermodynamic functions have been used in this study.