RAB: Provable Robustness Against Backdoor Attacks


الملخص بالإنكليزية

Recent studies have shown that deep neural networks (DNNs) are highly vulnerable to adversarial attacks, including evasion and backdoor (poisoning) attacks. On the defense side, there have been intensive interests in both empirical and provable robustness against evasion attacks; however, provable robustness against backdoor attacks remains largely unexplored. In this paper, we focus on certifying robustness against backdoor attacks. To this end, we first provide a unified framework for robustness certification and show that it leads to a tight robustness condition for backdoor attacks. We then propose the first robust training process, RAB, to smooth the trained model and certify its robustness against backdoor attacks. Moreover, we evaluate the certified robustness of a family of smoothed models which are trained in a differentially private fashion, and show that they achieve better certified robustness bounds. In addition, we theoretically show that it is possible to train the robust smoothed models efficiently for simple models such as K-nearest neighbor classifiers, and we propose an exact smooth-training algorithm which eliminates the need to sample from a noise distribution. Empirically, we conduct comprehensive experiments for different machine learning (ML) models such as DNNs, differentially private DNNs, and K-NN models on MNIST, CIFAR-10 and ImageNet datasets (focusing on binary classifiers), and provide the first benchmark for certified robustness against backdoor attacks. In addition, we evaluate K-NN models on a spambase tabular dataset to demonstrate the advantages of the proposed exact algorithm. Both the theoretical analysis and the comprehensive benchmark on diverse ML models and datasets shed lights on further robust learning strategies against training time attacks or other general adversarial attacks.

تحميل البحث