The AC Josephson effect manifests itself in the form of Shapiro steps of quantized voltage in Josephson junctions subject to RF radiation. This effect presents an early example of a driven-dissipative quantum phenomenon and is presently utilized in primary voltage standards. Shapiro steps have also become one of the standard tools to probe junctions made in a variety of novel materials. Here, we study Shapiro steps in a widely tunable graphene-based Josephson junction. We investigate the variety of patterns that can be obtained in this well-understood system depending on the carrier density, temperature, RF frequency, and magnetic field. Although the patterns of Shapiro steps can change drastically when just one parameter is varied, the overall trends can be understood and the behaviors straightforwardly simulated. The resulting understanding may help in interpreting similar measurements in more complex materials.