The quantum states of light in an integrated photonics platform provide an important resource for quantum information processing and takes advantage of the scalability and practicality of silicon photonics. Integrated resonators have been well explored in classical and quantum optics. However, to encode multiple information through integrated quantum optics requires broader utilization of the available degrees of freedom on a chip. Here, we studied the quantum interference between photon pairs of the same higher order whispering gallery modes populated by spontaneous four-wave mixing in an integrated silicon micro-disk resonator. The quantum interference between the photon pairs of the first two quasi-TE0 and quasi-TE1 radial modes was measured to be Vnet ~ 98 + 0.8 % and Vnet ~ 94 + 2.6 %, respectively. The results are promising for achieving higher-dimensional quantum states using the higher-order radial modes of a micro-disk resonator coupled with an integrated waveguide.