Escaping Cannibalization? Correlation-Robust Pricing for a Unit-Demand Buyer


الملخص بالإنكليزية

We consider a robust version of the revenue maximization problem, where a single seller wishes to sell $n$ items to a single unit-demand buyer. In this robust version, the seller knows the buyers marginal value distribution for each item separately, but not the joint distribution, and prices the items to maximize revenue in the worst case over all compatible correlation structures. We devise a computationally efficient (polynomial in the support size of the marginals) algorithm that computes the worst-case joint distribution for any choice of item prices. And yet, in sharp contrast to the additive buyer case (Carroll, 2017), we show that it is NP-hard to approximate the optimal choice of prices to within any factor better than $n^{1/2-epsilon}$. For the special case of marginal distributions that satisfy the monotone hazard rate property, we show how to guarantee a constant fraction of the optimal worst-case revenue using item pricing; this pricing equates revenue across all possible correlations and can be computed efficiently.

تحميل البحث