Electric Current Neutralization in Solar Active Regions and Its Relation to Eruptive Activity


الملخص بالإنكليزية

It is well established that magnetic free energy associated with electric currents powers solar flares and coronal mass ejections (CMEs) from solar active regions (ARs). However, the conditions that determine whether an AR will produce an eruption are not well understood. Previous work suggests that the degree to which the driving electric currents, or the sum of all currents within a single magnetic polarity, are neutralized may serve as a good proxy for assessing the ability of ARs to produce eruptions. Here, we investigate the relationship between current neutralization and flare/CME production using a sample of 15 flare-active and 15 flare-quiet ARs. All flare-quiet and 4 flare-active ARs are also CME-quiet. We additionally test the relation of current neutralization to the degree of shear along polarity inversion lines (PILs) in an AR. We find that flare-productive ARs are more likely to exhibit non-neutralized currents, specifically those that also produce a CME. We find that flare/CME-active ARs also exhibit higher degrees of PIL shear than flare/CME-quiet ARs. We additionally observe that currents become more neutralized during magnetic flux emergence in flare-quiet ARs. Our investigation suggests that current neutralization in ARs is indicative of their eruptive potential.

تحميل البحث