Electrically driven exciton-polariton optomechanics at super high frequencies


الملخص بالإنكليزية

Polaritons enable the resonant coupling of excitons and photons to vibrations in the application-relevant super high frequency (SHF, 3-30 GHz) domain. We introduce a novel platform for coherent optomechanics based on the coupling of exciton-polaritons and electrically driven SHF longitudinal acoustic phonons confined within the spacer region of a planar Bragg microcavity. An intrinsic property of the microcavity platform is the back-feeding of phonons via reflections at the sample boundaries, which enables frequency x quality factors products exceeding 10^14 Hz as well as huge modulation amplitudes of the optical transition energies (up to 8 meV). We show that the modulation is dominated by the phonon-induced energy shifts of the excitonic polariton component, thus leading to an oscillatory transition between the regimes of weak and strong light-matter coupling. These results open the way for polariton-based coherent optomechanics in the non-adiabatic, side-band-resolved regime of coherent control.

تحميل البحث