An integral arising from dyadic average of Riesz transforms


الملخص بالإنكليزية

In the work of S. Petermichl, S. Treil and A. Volberg it was explicitly constructed that the Riesz transforms in any dimension $n geq 2$ can be obtained as an average of dyadic Haar shifts provided that an integral is nonzero. It was shown in the paper that when $n=2$, the integral is indeed nonzero (negative) but for $n geq 3$ the nonzero property remains unsolved. In this paper we show that the integral is nonzero (negative) for $n=3$. The novelty in our proof is the delicate decompositions of the integral for which we can either find their closed forms or prove an upper bound.

تحميل البحث