Nickelate superconductors -- a renaissance of the one-band Hubbard model


الملخص بالإنكليزية

Following the discovery of superconductivity in the cuprates and the seminal work by Anderson, the theoretical efforts to understand high-temperature superconductivity have been focusing to a large extent on a simple model: the one-band Hubbard model. However, superconducting cuprates need to be doped, and the doped holes go into the oxygen orbitals. This requires a more elaborate multi-band model such as the three-orbital Emery model. The recently discovered nickelate superconductors appear, at first glance, to be even more complicated multi-orbital systems. Here, we analyse this multi-orbital system and find that it is instead the nickelates which can be described by a one-band Hubbard model, albeit with an additional electron reservoir and only around the superconducting regime. Our calculations of the critical temperature Tc are in good agreement with experiment, and show that optimal doping is slightly below the 20% Sr-doping of Ref. 11. Even more promising than 3d nickelates are 4d palladates.

تحميل البحث