Snake states of neutral atom from synthetic gauge field in a ring-cavity


الملخص بالإنكليزية

We propose the creation of an atomic analogue of electronic snake states in which electrons move along one-dimensional snake-like trajectory in the presence of a suitable magnetic field gradient. To this purpose, we propose the creation of laser induced synthetic gauge field inside a three-mirror ring cavity and show that under appropriate conditions, the atomic trajectory in such configuration mimics snake-state like motion. We analyse this motion using semi-classical and full quantum mechanical techniques for a single atom. We provide a detailed comparison of the original electronic phenomena and its atomic analogue in terms of relevant energy and length scales and conclude by briefly pointing out the possibility of consequent study of ultra cold condensate in similar ring-cavity configuration.

تحميل البحث