The GAPS Programme at TNG XXI -- A GIARPS case-study of known young planetary candidates: confirmation of HD 285507 b and refutation of AD Leo b


الملخص بالإنكليزية

The existence of hot Jupiters is still not well understood. Two main channels are thought to be responsible for their current location: a smooth planet migration through the proto-planetary disk or the circularization of an initial high eccentric orbit by tidal dissipation leading to a strong decrease of the semimajor axis. Different formation scenarios result in different observable effects, such as orbital parameters (obliquity/eccentricity), or frequency of planets at different stellar ages. In the context of the GAPS Young-Objects project, we are carrying out a radial velocity survey with the aim to search and characterize young hot-Jupiter planets. Our purpose is to put constraints on evolutionary models and establish statistical properties, such as the frequency of these planets from a homogeneous sample. Since young stars are in general magnetically very active, we performed multi-band (visible and near-infrared) spectroscopy with simultaneous GIANO-B + HARPS-N (GIARPS) observing mode at TNG. This helps to deal with stellar activity and distinguish the nature of radial velocity variations: stellar activity will introduce a wavelength-dependent radial velocity amplitude, whereas a Keplerian signal is achromatic. As a pilot study, we present here the cases of two already claimed hot Jupiters orbiting young stars: HD285507 b and AD Leo b. Our analysis of simultaneous high-precision GIARPS spectroscopic data confirms the Keplerian nature of HD285507s radial velocities variation and refines the orbital parameters of the hot Jupiter, obtaining an eccentricity consistent with a circular orbit. On the other hand, our analysis does not confirm the signal previously attributed to a planet orbiting AD Leo. This demonstrates the power of the multi-band spectroscopic technique when observing active stars.

تحميل البحث