Mixing effects of $Sigma^0-Lambda^0$ in $Lambda_c^+$ decays


الملخص بالإنكليزية

We analyze the mixing between $Sigma^0$ and $Lambda^0$ based on the baryon masses. We distinguish the contributions from QCD and QED in the baryon mass splittings. We find that the mixing angle between $Sigma^0$ and $Lambda^0$ is $(2.07pm 0.03)times 10^{-2} $, which leads to the decay branching fraction and up-down asymmetry of $Lambda_c^+ to Sigma^0 e^+ u_e$ to be ${cal B}(Lambda_c^+ to Sigma^0 e^+ u_e)=(1.5pm 0.2)times 10^{-5}$ and $alpha(Lambda_c^+ to Sigma^0 e^+ u_e)=-0.86pm 0.04$, respectively. Moreover, we obtain that $Delta {cal B}equiv {cal B}(Lambda_c^+to Sigma^0 pi^+) - {cal B}(Lambda_c^+to Sigma^+pi^0)=(3.8pm 0.5)times 10^{-4}$ and $Delta alpha equivalpha(Lambda_c^+to Sigma^0 pi^+) -alpha(Lambda_c^+to Sigma^+pi^0)=(-1.6pm 0.7)times10^{-2}$, which should vanish without the mixing.

تحميل البحث