Observational signatures of disk and jet misalignment in images of accreting black holes


الملخص بالإنكليزية

Black hole accretion is one of natures most efficient energy extraction processes. When gas falls in, a significant fraction of its gravitational binding energy is either converted into radiation or flows outwards in the form of black hole-driven jets and disk-driven winds. Recently, the Event Horizon Telescope (EHT), an Earth-size sub-millimetre radio interferometer, captured the first images of M87s black hole. These images were analysed and interpreted using general-relativistic magnetohydrodynamics (GRMHD) models of accretion disks with rotation axes aligned with the black hole spin axis. However, since infalling gas is often insensitive to the black hole spin direction, misalignment between accretion disk and black hole spin may be a common occurrence in nature. In this work, we use the general-relativistic radiative transfer (GRRT) code texttt{BHOSS} to calculate the first synthetic radio images of (highly) tilted disk/jet models generated by our GPU-accelerated GRMHD code texttt{HAMR}. While the tilt does not have a noticeable effect on the system dynamics beyond a few tens of gravitational radii from the black hole, the warping of the disk and jet can imprint observable signatures in EHT images on smaller scales. Comparing the images from our GRMHD models to the 43 GHz and 230 GHz EHT images of M87, we find that M87 may feature a tilted disk/jet system. Further, tilted disks and jets display significant time variability in the 230 GHz flux that can be further tested by longer-duration EHT observations of M87.

تحميل البحث