We report a new type of spin-orbit coupling (SOC) called geometric SOC. Starting from the relativistic theory in curved space, we derive an effective nonrelativistic Hamiltonian in a generic curve embedded into flat three dimensions. The geometric SOC is $O(m^{-1})$, in which $m$ is the electron mass, and hence much larger than the conventional SOC of $O(m^{-2})$. The energy scale is estimated to be a hundred meV for a nanoscale helix. We calculate the current-induced spin polarization in a coupled-helix model as a representative of the chirality-induced spin selectivity. We find that it depends on the chirality of the helix and is of the order of $0.01 hbar$ per ${rm nm}$ when a charge current of $1~{rm mu A}$ is applied.