We show that the dissipation rate bounds the rate at which physical processes can be performed in stochastic systems far from equilibrium. Namely, for rare processes we prove the fundamental tradeoff $langle dot S_text{e} rangle mathcal{T} geq k_{text{B}} $ between the entropy flow $langle dot S_text{e} rangle$ into the reservoirs and the mean time $mathcal{T}$ to complete a process. This dissipation-time uncertainty relation is a novel form of speed limit: the smaller the dissipation, the larger the time to perform a process.