Automatic Design of Mechanical Metamaterial Actuators


الملخص بالإنكليزية

Mechanical metamaterials actuators achieve pre-determined input--output operations exploiting architectural features encoded within a single 3D printed element, thus removing the need of assembling different structural components. Despite the rapid progress in the field, there is still a need for efficient strategies to optimize metamaterial design for a variety of functions. We present a computational method for the automatic design of mechanical metamaterial actuators that combines a reinforced Monte Carlo method with discrete element simulations. 3D printing of selected mechanical metamaterial actuators shows that the machine-generated structures can reach high efficiency, exceeding human-designed structures. We also show that it is possible to design efficient actuators by training a deep neural network, eliminating the need for lengthy mechanical simulations. The elementary actuators devised here can be combined to produce metamaterial machines of arbitrary complexity for countless engineering applications.

تحميل البحث