Conformal infinitesimal variations of submanifolds


الملخص بالإنكليزية

This paper belongs to the realm of conformal geometry and deals with Euclidean submanifolds that admit smooth variations that are infinitesimally conformal. Conformal variations of Euclidean submanifolds is a classical subject in differential geometry. In fact, already in 1917 Cartan classified parametrically the Euclidean hypersurfaces that admit nontrivial conformal variations. Our first main result is a Fundamental theorem for conformal infinitesimal variations. The second is a rigidity theorem for Euclidean submanifolds that lie in low codimension.

تحميل البحث