Correlated electro-optical and structural study of electrically tunable nanowire quantum dot emitters


الملخص بالإنكليزية

Quantum dots inserted in semiconducting nanowires are a promising platform for the fabrication of single photon devices. However, it is difficult to fully comprehend the electro-optical behaviour of such quantum objects without correlated studies of the structural and optical properties on the same nanowire. In this work, we study the spectral tunability of the emission of a single quantum dot in a GaN nanowire by applying external bias. The nanowires are dispersed and contacted on electron beam transparent Si3N4 membranes, so that transmission electron microscopy observations, photocurrent and micro-photoluminescence measurements under bias can be performed on the same specimen. The emission from a single dot blue or red shifts when the external electric field compensates or enhances the internal electric field generated by the spontaneous and piezoelectric polarization. A detailed study of two nanowire specimens emitting at 327.5 nm and 307.5 nm shows spectral shifts at rates of 20 and 12 meV/V, respectively. Theoretical calculations facilitated by the modelling of the

تحميل البحث