From Data to Actions in Intelligent Transportation Systems: a Prescription of Functional Requirements for Model Actionability


الملخص بالإنكليزية

Advances in Data Science permeate every field of Transportation Science and Engineering, resulting in developments in the transportation sector that {are} data-driven. Nowadays, Intelligent Transportation Systems (ITS) could be arguably approached as a ``story intensively producing and consuming large amounts of data. A~diversity of sensing devices densely spread over the infrastructure, vehicles or the travelers personal devices act as sources of data flows that are eventually fed {into} software running on automatic devices, actuators or control systems producing, in~turn, complex information flows {among} users, traffic managers, data analysts, traffic modeling scientists, etc. These~information flows provide enormous opportunities to improve model development and decision-making. This work aims to describe how data, coming from diverse ITS sources, can be used to learn and adapt data-driven models for efficiently operating ITS assets, systems and processes; in~other words, for data-based models to fully become emph{actionable}. Grounded in this described data modeling pipeline for ITS, we~define the characteristics, engineering requisites and challenges intrinsic to its three compounding stages, namely, data fusion, adaptive learning and model evaluation. We~deliberately generalize model learning to be adaptive, since, in~the core of our paper is the firm conviction that most learners will have to adapt to the ever-changing phenomenon scenario underlying the majority of ITS applications. Finally, we~provide a prospect of current research lines within Data Science that can bring notable advances to data-based ITS modeling, which will eventually bridge the gap towards the practicality and actionability of such models.

تحميل البحث