Edge Current and Pairing Order Transition in Chiral Bacterial Vortex


الملخص بالإنكليزية

We report the selective stabilization of chiral rotational direction of bacterial vortices, from turbulent bacterial suspension, in achiral circular microwells sealed by an oil-water interface. This broken-symmetry, originating from the intrinsic chirality of bacterial swimming near hydrodynamically different top and bottom surfaces, generates a chiral edge current of bacteria at lateral boundary and grows stronger as bacterial density increases. We demonstrate that chiral edge current favors co-rotational configurations of interacting vortices, enhancing their ordering. The interplay between the intrinsic chirality of bacteria and the geometric properties of the boundary is a key-feature for the pairing order transition of active turbulence.

تحميل البحث