Due to dense deployments of Internet of things (IoT) networks, interference management becomes a critical challenge. With the proliferation of aerial IoT devices, such as unmanned aerial vehicles (UAVs), interference characteristics in 3D environments will be different than those in the existing terrestrial IoT networks. In this paper, we consider 3D topology IoT networks with a mixture of aerial and terrestrial links, with low-cost cross-dipole antennas at ground nodes and omni-directional antennas at aerial nodes. Considering a massive-access communication scenario, we first derive the statistics of the channel gain at IoT receivers in closed form while taking into account the radiation patterns of both ground and aerial nodes. These are then used to calculate the ergodic achievable rate as a function of the height of the aerial receiver. We propose an interference mitigation scheme that utilizes 3D antenna radiation pattern with different dipole antenna settings. Our results show that using the proposed scheme, the ergodic achievable rate improves as the height of aerial receivers increases. In addition, the ratio between the ground and aerial receivers that maximizes the peak rate also increases with the aerial IoT receiver height.