Waveform Optimization for MIMO Joint Communication and Radio Sensing Systems with Training Overhead


الملخص بالإنكليزية

In this paper, we study optimal waveform design to maximize mutual information (MI) for a joint communication and (radio) sensing (JCAS, a.k.a., radar-communication) multi-input multi-output (MIMO) downlink system. We consider a typical packet-based signal structure which includes training and data symbols. We first derive the conditional MI for both sensing and communication under correlated channels by considering the training overhead and channel estimation error (CEE). Then, we derive a lower bound for the channel estimation error and optimize the power allocation between the training and data symbols to minimize the CEE. Based on the optimal power allocation, we provide optimal waveform design methods for three scenarios, including maximizing MI for communication only and for sensing only, and maximizing a weighted sum MI for both communication and sensing. We also present extensive simulation results that provide insights on waveform design and validate the effectiveness of the proposed designs.

تحميل البحث