Multi-port beamsplitters are cornerstone devices for high-dimensional quantum information tasks, which can outperform the two-dimensional ones. Nonetheless, the fabrication of such devices has been proven to be challenging with progress only recently achieved with the advent of integrated photonics. Here, we report on the production of high-quality $N times N$ (with $N=4,7$) multi-port beamsplitters based on a new scheme for manipulating multi-core optical fibers. By exploring their compatibility with optical fiber components, we create 4-dimensional quantum systems and implement the measurement-device-independent random number generation task with a programmable 4-arm interferometer operating at a 2 MHz repetition rate. Thanks to the high visibilities observed, we surpass the 1-bit limit of binary protocols and attain 1.23 bits of certified private randomness per experimental round. Our result demonstrates that fast switching, low-loss and high optical quality for high-dimensional quantum information can be simultaneously achieved with multi-core fiber technology.