We present a general prescription for determining the global U(1) symmetries of six-dimensional superconformal field theories (6D SCFTs). We use the quiver-like gauge theory description of the tensor branch to identify candidate U(1) symmetries which can act on generalized matter. The condition that these candidate U(1)s are free of Adler-Bell-Jackiw (ABJ) anomalies provides bottom-up constraints for U(1)s. This agrees with the answer obtained from symmetry breaking patterns induced by Higgs branch flows. We provide numerous examples illustrating the details of this proposal. In the F-theory realization of these theories, some of these symmetries originate from deformations of non-abelian flavor symmetries localized on a component of the discriminant, while others come from an additional generator of the Mordell-Weil group. We also provide evidence that some of these global U(1)s do not arise from gauge symmetries, as would happen in taking a decoupling limit of a model coupled to six-dimensional supergravity.