Steady-state Fano coherences in a V-type system driven by polarized incoherent light


الملخص بالإنكليزية

We explore the properties of steady-state Fano coherences generated in a three-level V-system continuously pumped by polarized incoherent light in the absence of coherent driving. The ratio of the stationary coherences to excited-state populations $mathcal{C} = (1+frac{Delta^2}{gamma(r+gamma)} )^{-1}$ is maximized when the excited-state splitting $Delta$ is small compared to either the spontaneous decay rate $gamma$ or the incoherent pumping rate $r$. We demonstrate that an intriguing regime exists where the $mathcal{C}$ ratio displays a maximum as a function of the dephasing rate $gamma_d$. We attribute the surprising dephasing-induced enhancement of stationary Fano coherences to the environmental suppression of destructive interference of individual incoherent excitations generated at different times. We identify the imaginary Fano coherence with the non-equilibrium flux across a pair of qubits coupled to two independent thermal baths, unraveling a direct connection between the seemingly unrelated phenomena of incoherent driving of multilevel quantum systems and non-equilibrium quantum transport in qubit networks. The real part of the steady-state Fano coherence is found to be proportional to the deviation of excited-state populations from their values in thermodynamic equilibrium, making it possible to observe signatures of steady-state Fano coherences in excited-state populations. We put forward an experimental proposal for observing steady-state Fano coherences by detecting the total fluorescence signal emitted by Calcium atoms excited by polarized vs. isotropic incoherent light. Our analysis paves the way toward further theoretical and experimental studies of non-equilibrium coherent steady states in thermally driven atomic and molecular systems, and for the exploration of their potential role in biological processes.

تحميل البحث