Quantum Slide and NAND Tree on a Photonic Chip


الملخص بالإنكليزية

In the age of post-Moore era, the next-generation computing model would be a hybrid architecture consisting of different physical components such as photonic chips. In 2008, it has been proposed that the solving of NAND-tree problem can be sped up by quantum walk. Such scheme is groundbreaking due to the universality of NAND gate. However, experimental demonstration has never been achieved so far, mostly due to the challenge in preparing the propagating initial state. Here we propose an alternative solution by including a structure called quantum slide, where a propagating Gaussian wave-packet can be generated deterministically along a properly-engineered chain. In this way, the optical computation can be achieved with ordinary laser light instead of single photon, and the output can be obtained by single-shot measurements instead of repeated quantum measurements. In our experimental demonstration, the optical NAND-tree is capable of solving computational problems with a total of four input bits, based on the femtosecond laser 3D direct-writing technique on a photonic chip. These results remove one main roadblock to photonic NAND-tree computation, and the construction of quantum slide may find other interesting applications in quantum information and quantum optics.

تحميل البحث