Analysis of micropolar fluids: existence of potential microflow solutions, nearby global well-posedness, and asymptotic stability


الملخص بالإنكليزية

In this paper we concern ourselves with an incompressible, viscous, isotropic, and periodic micropolar fluid. We find that in the absence of forcing and microtorquing there exists an infinite family of well-behaved solutions, which we call potential microflows, in which the fluid velocity vanishes identically, but the angular velocity of the microstructure is conservative and obeys a linear parabolic system. We then prove that nearby each potential microflow, the nonlinear equations of motion are well-posed globally-in-time, and solutions are stable. Finally, we prove that in the absence of force and microtorque, solutions decay exponentially, and in the presence of force and microtorque obeying certain conditions, solutions have quantifiable decay rates.

تحميل البحث